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Rectangular waveguides with two conventional and two

superconducting walls

RAJ YALAMANCHILIt, ZHENG AN QIUt and
YEN-CHU WANGt

The propagation properties of TEm" modes and their dispersion relations in
rectangular waveguides with two conventional and two superconducting walls,
derived by using the Meissner boundary conditions on the superconducting walls,
are presented. In addition to recovering some previously known results, some
novel results have been obtained: the cut-off wavelength of the dominant TE t°
mode is greater than that of the conventional TE_o mode, and the tangential
electric field and normal magnetic field for the dominant mode TE 1° exist on the
superconducting surfaces. Expressions for electromagnetic components, surface
currents, attenuation coefficient, maximum transmitted power, dispersion and
wave impedance are also presented.

1. Introduction

Over several years there has been considerable progress in the development of

superconducting devices in the microwave and millimetre wave bands, for example,
low- and high-temperature superconducting microwave filters, resonators, antennas,

phase shifters, etc. Many superconducting electronic devices have been sought at

liquid nitrogen temperatures (Nisenoff 1988, Van Duzer and Tuner 1981). The

discovery of high-T_ superconductors 0-ITS) has fundamentally changed the pro-

spects of superconductive electronics. The low surface resistance of superconducting
materials makes possible microwave devices and circuits with very high Q, low

insertion loss and dispersion. Superconducting waveguides have been studied as low

T_ superconductors (< IgK) (Alaux and Wybouw 1976, gohner 1978, Zepp et aL. _
1977, Fabre et ai. 1981). Experimental and theoretical results have shown that HTS _

waveguides and transmission lines exhibit significantly better performance than that

of their identical metallic counterparts (Wang et aL 1994, Yalamanchili et al. 1992).

The propagation properties of transverse electric (TE) modes in high-T_

(T_ > 30 K) superconductor rectangular waveguides have recently been studied using

HTS electromagnetic theory and Meissner boundary conditions which are consistent

with the two-fluid model (Wang et aL 1994). The new boundary conditions give rise

to different field solutions, hence new waveguide characteristics. This paper describes
the propagation properties of TE modes in rectangular waqeguides with two

conventional and two superconducting walls (WGCSW) based on the theory
established by Wang et aL (1994). This kind of waveguide has different character-

istics from either HTS waveguides or conventional waveguides. The attenuation and

dispersion are smaller than that of conventional waveguides. The dominant mode in

the WGCSW is the TE 1° mode, which is the same as conventional waveguides. An

interesting property is that the cut-off wavelength of the dominant mode is greater
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than that of conventional wavegnides. Therefore, it is easier to excite the dominant
mode in the WGCSW. Since the WGCSW has two conventional broad walls and

two superconducting walls (two simply-connected superconductors), it is easier to

fabricate than a four-wall superconducting waveguide.

In section 2, the most important dispersion relation of WGCSW is derived along

the x-direction from the wave equation and the Meissner boundary conditions on

two walls (xffi0, x ffia). Expressions for electromagnetic field components and

surface currents, including the surface superconducting current J. and the surface

normal current J.,, based on two-fluid theory are given. Various parameters of the
WGCSW are analysed and compared with conventional waveguides.

2. Theory

2.1. Wave equation and numerical solutions of cut-off wavelenoth

This section analyses a WGCSW with two narrow superconducting walls (x = 0

and x=a) and two broad perfect or good conductor walls (y=0 and y=b), as shown

in Fig. 1. A rigorous formulation based on Maxwell's equations and Meissner

boundary conditions is used to obtain the new electromagnetic field properties in the
WGCSW.

The governing wave equation (Helmhoitz equation) and the Meissner boundary

conditions for the longitudinal magnetic field H, of the TE mode in an air-filled
WGCSW are:

V_H,+k_H, =O (1)

OH: 1

On _.LH'=0 atxf0, x=a (2a)

OH:
On =0 at y=O, y=b (2b)

where the operator V_ is the Laplacian operator in the transverse plane (i.e._'

xy-plane). Propagation in the z-direction is assumed. The parameters a and b are the

Figure 1.

X
8

WGCSW with two narrow superconducting walls (x=0, x=a) and two broad
perfect or good conductor walls (y=0, yffib).
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width and height of the WGCSW, respectively; kc is the cut-off wavenumber; and _.L

is the London penetration depth, the value of which for HTS varies from 10- s m to

10-Tm (Burns 1992). Equation (2 a) is the Meissner boundary condition; (2 b) is the

boundary condition for the conventional wall. The important Meissner effect is that
the fields do not vanish abruptly from the surface of a bulk superconductor, rather,

they decay exponentially into the bulk. The penetration depth _.L is the characteristic

decay length of the magnetic field into a superconductor. It is obvious that when

2L--, 00, the second term of the Meissner boundary condition approaches zero, (2 a)
reduces to the boundary condition (OHz/On)=O for the conventional waveguide.

Therefore, the first term of (2 a) is related to the properties of the WGCSW. Thus,
the Meissner boundary conditions are relevant to the two-fluid superconducting

model.

It is assumed that the general solution of the governing equation is

Hz=(CI sin k,,x+C2 sin k_x) cos k_y (3)

where C 1 and C2 are unknown coefficients; both cannot be equal to zero at the same

time; kx and ky are the uknown wavenumbers along the x and y axes, respectively.
Substituting (3) into (2 a) and (2 b) obtains two sets of equations for kx and ky:

. cos k_a_ -(kx cos " sin k_a\
(kx sin g_a-_) Cl \ Ic_a+--_--t ) C,=O (4b)

1
,-- Ct - k=Cz = 0 (4 b)
l.Jt

and

m/t

k, =-_-, m = 0, l, 2, 3 .... (5)

For non-trivial solution conditions, the determinant of the coefficient matrix of (4 a),

and (4 b) has to be equal to zero:

1
-k x

_.z

cos k/ sin k_a

kz sin k_a- 2L kz cos k_a-_

=0 (6)

Therefore, the one important dispersion relation in the transcendental equation is
obtained from the above determinant as

2)'Lk" (7)
tan k_a = (k_,lL)z _ 1

The non-integer roots of this equation describe the dispersion relations along the
x-axis as a function of London penetration depth and the dimensions of the

WGCSW. A graphical method is used for the solution, as shown in Fig. 2, from
which the cut-off features are obtained.
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Figure 2. Graphical method of solving (7) to obtain the cut-off features (p= l is the
first root).

or

Substituting (4 a) into (3),

n:[ _ C1 (cos kx,_ "Jr- kTL sin kxx) cos k _
(8)

H, = C2(k_2t. cos kcx + sin k_x) cos k_ (9)

It is obvious from (9) that k_#0, otherwise the solution becomes trivial. It is worth

noting that owing to the non-integral nature, the mode indexes are determined by

solving (7), which is derived from the Meissner boundary conditions on the two
walls.

To avoid risk of confusion with the commonly used TE,,, the superscripts pm
(the index p is related to the superconducting walls) are used to designate the mode, s'

in the WGCSW. In this case, the dominant mode is designated TE t° (p = 1 does not

mean integer index along the x-axis, instead it is the first root of (7)). The above

formula, however, does cover conventional waveguides in which H=occos k__rcos kyy
when zL-" _, as is evident from (8). There are no TE °" modes in the WGCSW, in

which property it is quite different from conventional waveguides. "

Substituting (3) into (1),

k_=k_ +k2y (10)

Therefore, the cut-off wavelength ;-c is obtained as

2_

;.C=k--_ (ll)

The numerical results of cut-off wavelengths for some TE p" modes are listed in the

Table. These results demonstrate that the cut-off wavelength of the dominant mode
in the WGCSW ()._°_4.06mm for a=2mm) is greater than that of TEIo in a

conventional waveguide with the same dimensions by a factor of 1.013, and the

bandwidth is greater than an octave.
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2.2. Field components and surface current distributions

Field component expressions for the TE mode can be determined from the axial

magnetic field H z by means of the relations between the transverse and axial

components as follows.

From (9), let Bo = k_t. and H o = C2 for simplicity. Then the axial magnetic field

component H, becomes

H, = Ho(B o cos k_x + sin k_x) cos kyy (12)

where Ho is an unknown coefficient depending on excitations, Bo is a proportion-

ality parameter which varies for different modes and penetration depths. The wave

factor in the form of exp(jcot-_z) is assumed. The real part _t of the propagation
constant ? is the attenuation constant, the imaginary part fl is the phase constant and

co is the angular frequency. Other field components can be expressed as

h jflk_

=--_/Ho(Bo sin k/-cos k_x) cos k_
(13a)

H _J/Ik,
,---_- Ho(Bo cos k_rr + sin k_) sin k_

(13b)

E_ =J_ Ho(Bo cos krr + sin k/) sin kp, (13c)

E j_ok_

,=---_, Ho(Bo sin k_-cos k_x) cos kp,
(13d)

where/Zo is the permeability of the material, assumed to be that of free space.
The wave impedance Zh of the WGCSW is defined as

E,, E, co/zo (14)
#

!

I

Cut-off wavelength (mm)

M_ a=l a=2 a=4 a=8

TE '° 2.05(2.0)? 4.06 (4.0) 8.07(8.0) . 16-09(16.0)
TE z° 1-02(I.0) 2.04(2.0) 4.07 (4.0) 8-04 (8'0)
TE tl 0-90(0.89) 1"79(1.78) 3"58(3"58) 7.16 (7.15)
TE 2t 0.70 (0.70) 1.42 (1.41) 2.83 (2.82) 5.66 (5.65)
TE 3° 0.67 (0.48) 1.34 (0.97) 2.67 (I.94) 5.34 (3.88)
TE 3t 0-56 (0.44) I.I1 (0.89) 2.22 (I.79) 4-44 (3.58)

?Values in parentheses are the corresponding cut-off wavelengths for the first six TE,. modes in

conventional waveguides.

Cut-off wavelengths for some TE _ modes (2, = 10- vm, a = 2b; for At= 10- s m there is little
difference in the values).
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The instantaneous field expressions for the dominant TE 1° mode in the WGCSW
can be obtained as:

H, = Ho( Bo cos krr + sin k_r) cos (tot -/Iz) (i 5 a)

h pk_

=-_c- Ho(B o sin krr-cos krr) sin (rot-flz) (15b)

cO/zok_

Ey = _ Ho( - B o sin k_ + cos k_x) sin (tot- flz) (15c)

where, p=2n/2, is the phase constant of the TE _° mode, and 2. is the waveguide
wavelength of the TE t° mode. There are three field components in the WGCSW, as

in conventional waveguides. Note that the superscript '10' for the dominant mode is
omitted from here on unless otherwise stated.

From the above discussion, (15 c) demonstrates clearly that, due to Bo being very

small, the space distribution of the electric field E, of the TE t° mode is proportional,
significantly, to cosk_x along the x-direction. This means that tangential electric

fields exist on the superconducting surfaces (x = 0 and x = a) of the WGCSW. This

novel property is completely different from that of a perfectly conducting conven-

tional waveguide since, for Hz _ 0 and for a finite surface impedance at microwave

and millimetre wavelengths, the tangential components of E on the superconducting
walls are finite. The space distribution along the .v-direction is the same as for

conventional waveguides. For details of the field distributions see Fig. 3.

Equation (15 b) demonstrates that the space distribution of the magnetic field H_
is largely proportional to cosk_x, which means that normal magnetic fields exist on

the surfaces (x =0 and x =a) (see Fig. 3). The above results demonstrate that tbe

magnetic field lines are not continuous in the WGCSW (Orlando and Delin 1991),

which is in agreement with the Meissner effect, but the magnetic flux density B is

continuous in and out of the WGCSW walls because B=po(H+M ) (M is the
magnetization density in the walls and is not equal to zero). This also is a new

property in the WGCSW, which does not exist in conventional-waveguides.

Figure 3.

(a) (b)

(a)DistributionoftheelectricfieldE,;(b)distributionofthemagneticfieldH=,
for the TE '° mode.
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London's equations and the two-fluid model are used to investigate the current
distribution on the surfaces (x=O and x=a). The total conduction current density
consists of the superconducting current density J0 and the normal electron density J,
based on the two-fluid model. This model assumes that the conducting electrons in
the WGCSW walls are divided into two categories. We use a different method to
describe their distribution. The surface superconducting current JR due to super-
electrons is calculated based on the London relation and appropriate boundary
condition first. Then the normal surface current ./,n due to normal electrons and the
losses is calculated using the approximate resistive boundary condition and the
perturbation approach.

The superconducting current J0 in two isolated walls in which each wall is
considered as a simply-connected superconductor using a thin-film substrate is given
as

I
J,=--_ A (16)

This is London's relation, where A = pod.I, and d (in T m) is the vector potential in
the WGCSW. Let the vector potential inside the air-filled hollow region in the
waveguide be A, (subscript a indicates the air-filled WGCSW). This satisfies the
following equations:

V_An=B (17)

E=k_d: + VV. A. (18)
JC_/Joeo

where eo is the permittivity of the material.
Thus, the London relation guarantees that the vector potential is a 'real field'

that is completely specified. Equation (18) is called Lorentz's gauge, which gives rise
to the relation between the electric field E and the vector potential A. in the air
region.

Before solving the current distribution problem, it is important to determine the
boundary condition at a boundary between the two media (here, the superconduct-
ing medium and air for walls x=0 and x =a; the perfect conductor and air _'or walls

y = 0 and y = b). The boundary condition on the tangential components of fields (J,
and A,) for the simply-connected superconductor is

I
.I,,-- -_ A., ' (19)

where the subscript 'at' denotes the component tangential to the boundary in the air
or the applied field region; 'st' denotes the component of supercurrent density
tangential to the boundary in the HTS. Note that ./,t is the bulk current. Once Ao is
known, the current density J,, and the surface supercurrent density ./u, are readily
calculated. The solution satisfying (17) and (18) is obtained from B as follows:

1
r
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A u ffiAo(B o sin k_.x + cos k_x) sin k,y (20a)

iA_k_

Au =J:_ Ho(Bo cos k_-sin k_x) sin k,y

l_°kY Ho(B o cos k_x + sin k_x) sin k,y (20 b)

jAoky

A,y= _-- (Bo sin k_ +cos kxx) cos k,y

/_okx
+ _.2 Ho(Bo sin k__r- cos kxx) cos k_.), (20 c)

kc

The surface supercurrent distributions on the isolated walls (x=O and x=a) are
obtained from (19) as follows:

(x = 0 plane)

d,_ = Jma, + J..a,

ill F.ok. _ ] Ao'L-_--cH° cos k_- cos k,.v a,---A-- sin k_a, (21 a)

(x = a plane)

t

J,_ ffiJma, + J.,a, ,"

cos a, + -_ sin k,ya, (2 ! b)"A L-_-_ no cos k,y- k,y

where J,y and J,,, are the surface supercurrent magnitudes on the walls along the y-

and z-directions, respectively. Consider, here, that the superconducting current

decays exponentially in the walls, so the current is mainly carried by the supercon-
ductor surface adjacent to the air in the WGCSW. It is easy to,see that the surface

supercurrtmt and bulk current are very large because the amphtude of d,,t is
proportional to l//., (A =/_o_), which is of the order of i0 T.

All high-T_ materials are type II superconductors. In the Meissner phase, it is

assumed that the critical field Hot _,7.7 to 385 A m-_ (depending on temperature)

for a HTS sample of YBa2Cu3Oy (88.2 K, H$ axis) (Wu and Sridhar 1990), so if
Howl3 to 660Am -t, then the theoretical values of supercurrent density are
estimated to b¢ about 10_-s A cm-2 which is in excellent agreement with other data

(Burns 1992, Heinen et al. 1991, Miranda et al. 1991, Levenson et al. 1991). The

distributions of surface supercurrent and normal current on the x=O and x=a
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planes of the WGCSW are shown in Fig. 4. (Note that the distributions of the real

and imaginary parts of the surface supercurrent of the WGCSW are the same.)

The surface normal current distribution at its boundaries can be obtained using
the approximate resistive boundary condition n x H=J,, (Senior 1975) as given by

(on the y = 0 plane)

J_. = J,n_ax + J,,:a z

=Ho(B o cos kxx + sin k,_x)a,,-_.2Jflk" Ho(Bo sin k.x-cos k,,_,:)az
k¢

(22a)

(on the y = b plane)

J,. = J,.,,a,, + J,n:a z

= - Ho cos kyb(B o cos k_ + sin k_.x)ax

jflk,,
H o cos kyb(B o sin kF¢-cos k_)a,

k_ (22b)

(on the x =0 plane)

• Jflkv

J,, = J,n_j, + J,,:a: = HoB Ocos Kryaj,- _ HoB Osin k_yaz (22 c)

(on the x = a plane)

1,, = J,.yay + J,,,a z

= - Ho(B o cos k_a + sin k_a) cos k_a,

jflky Ho(Bo cos k&-sin k.a) sin kyyaz (22 d)
kc

where J,,y and J,,_ are the surface normal current magnitudes on the walls along the
y- and z-directions, respectively. It is easy to see that the distributions of the surface
normal currents on the walls x=0 and x=a are the same as those of the surface

supercurrents on the walls, which is the result of the two-fluid model..But the
distributions of current on the y=O and y=a surfaces differ from conventional

waveguides due to different electromagnetic field distributions. The losses of the

WGCSW come from the surface normal current flowing through the small surface

(a)

Figure 4.

/] /
Jssa OZ' 2.0YJ_a _ _I 'I

Vi

(b)

Distribution of surface supercurrent and surface normal current for the TE 1°
mode on the walls (a) x = 0, (b) x = a.
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impedance. It is predictable that the losses are small because Bo is very small. The
distributions of surface current on the WGCSW planes y = 0 and y = b are shown in

Fig. 5.

2.3. Attenuation coe_cient

The attenuation caused by two superconducting walls and two conventional

walls can be calculated by the perturbation technique as given approximately by

_l°_ 3.07 × 10 -_ dBkm -x (23)

where fc is the cut-off frequency of the TE x° mode, R, and Rn are the surface
resistances of HTS and metal walls, respectively, and _.Lis in millimetres. Note that

the attenuation is not only proportional to f_ because R, ocf 2 (Romanofsky and

Bhasin 1992), but also proportional to A[ (Rna:f_/_). The curve of attenuation

coefficient • versus frequency f is shown in Fig. 6 in which R,_ 5.0 × 10-zsfz f_,

R,_2.6× 10-Tfl/2f] (Cu), and a=2b=2mm. As far as the attenuation is con-

cerned, it is greater than that of high-To superconducting waveguides, but smaller
than that of conventional waveguides.

Losses in the WGCSW are generated from three sources: superconductor loss,

metal loss and dielectric loss. A typical superconducting waveguide used in micro-
wave and millimetre-wave circuits uses low-loss dielectrics or free space, so the

dominant loss mechanisms arc the superconductor loss and metal loss.

The superconductor loss is caused by the current of normal electrons in the

superconducting walls based on the two-fluid model theory. The paired supercon-

ducting electrons are dissipationless because they cannot be scattered without
breaking pairs. The microwave surface resistance of superconducting films has been

found to be as low as a few microohms. These surface resistance values are lower,

than those for copper at the same temperature by a factor of several tens. Such l/

surface resistance gives a small power loss. If the penetration depth _.L= 3.6 x 10-_m

for the case of conduction along the c-axis and the surface resistance is equal to
10.3 mr2 (60 K) at 14.567 GHz (How et al. 1992), the attenuation coefficient is found

to be about 0.9dBm -x for R._30mfl. The metal loss is the same as for

conventional waveguides.

(a)

Figure 5.

(b)

Distribution of surface current for the TE Io mode on the walls (a)y = 0, (b)y-_-b.
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_ wGcsw

1.2 1.4 1.6 1.8

Frequency (f/f_)

Figure 6. Attenuation due to wall losses versus frequency (,!.l = 10 -_ m). CWG, conventional
waveguide; WGCSW, waveguide with two conventional and two superconducting
walls.

2.4. Phase velocity, oroup velocity and phase dispersion

Superconductors have a frequency-independent penetration depth in the tera-

hertz range, which determines field penetration into the material, rather than a

frequency-dependent skin depth as for normal conductors. This means that super-
conductors introduce practically no dispersion into a microwave circuit. Dispersion

in the WGCSW, if any, is due to the frequency dependence of the attenuation caused

by the two broad walls. Dispersion caused by the frequency dependence of the phase,

velocity is almost the same as for conventional waveguides. The phase velocity vb:

and the group velocity v. of the TE l° mode can be shown to be given by

(24)

''= : (25)

where c is the speed of light in free space.
Our work shows that the phase velocity (group velocity) of the WGCSW for the

dominant TE 1° mode is smaller (greater) (by about 1.4%) than that of conventional

waveguides with the same dimensions and frequency becausefc is smaller than that
for conventional waveguides. Therefore, the dispersion produced for the same

geometry is small. In summary, the signal distortion due to dispersion in the
WGCSW is reduced dramatically by two superconducting walls.
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2.5. Maximum transmitted power (dominant mode)

The maximum transmitted power in the WGCSW is given by

P = ab...
where r/o is the intrinsic impedance of the medium inside the waveguide, and the

mangitude of the electric field intensity IE_,I is given from (15 c) as

IEmat I= t Ho IM/t°
k, (27)

In the Meissner phase, the maximum electric field intensity and power in the

WGCSW are smaller than that of conventional waveguides (29 kV cm-_ and 11 kW)

because Ho is very small. For example, they are about 60Vcm-_ and 26mW for

Ho_ _77mAcm -_, and 3kVcm -_, 64W for H,_3-85A cm -_, respectively. It is

clear from (26) and (27) that the transmitted power and maximum electric field are

dependent on the London penetration depth (kcoc l/At.). The larger the London

penetration depth, the larger is the transmitted power and maximum electric field. It
should be noted that the penetration depth also increases with temperature, which

means that more power is carried by the WGCSW.

3. Conclusions

A theoretical analysis for a waveguide with two conventional and two supercon-
ducting walls has been presented. It is based on high-To superconducting electro-

magnetic theory and M¢issner boundary conditions. The important implications of

this paper arc:

(a) the bandwidth of the WGCSW is greater than that of conventional metallic
r Iwaveguides with the same dimensions; ,.

(b) the tangential electric field and normal magnetic field of the TE !° mode are

finite on the inner surfaces of the walls (x=O and x=a), which is in

agreement with Wang et al. (1994);

(c) the magnetic field lines are not continuous in the WGCSW, which is the

result of Meissner effect;

(d) the surface supercurrents are very large and the surface normal currents are

very small, so the attenuation coefficient of the WGCSW is smaller than that

of conventional waveguidcs by about 102 to 10_ times._or different surface

resistance and penetration depth--the main loss mechanism is metal loss due
to the two broad walls;

(e) in the Meissner phase, the maximum electric field intensity and transmitted

power are smaller than those of conventional waveguides because the critical

field (H,t) is very small;

(f) dispersion is small compared with conventional waveguides;

(g) the wave impedance Zh of the WGCSW has the same expression as for

conventional waveguides.
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